All Saints CE Primary School \& Nursery

Nurturing, Resilience \& Achievement for all!

芴

Date written:	July 2021
Date adopted/reviewed:	October 2021
Review schedule:	Triennial
Policy Area:	Curriculum

Aims and Ethos

At All Saints CE Primary School \& Nursery it is our aim to raise standards by promoting a school ethos that is underpinned by core Christian values. Our Christian values support all areas of learning and can contribute to pupils' motivation to learn. It is recognised that this will be most successful when the values and attitudes promoted by the staff provide a model of behaviour for the children. All our policies and decision making are formed through the lenses of these Christian values to ensure that our school lives them out in all aspects of its collective life.

This policy supports the White Rose maths scheme used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations.

- Concrete representation- a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
- Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Mathematics Mastery

At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied
problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in Year 1 to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

How to use the policy:

This mathematics policy is a guide for all staff in All Saints and has been adapted from work by the NCETM and White Rose. Teachers can use any teaching resources that they wish to use and the policy does not recommend one set of resources over another, rather that, a variety of resources are used. For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract (CPA) approach [Make it, Draw it, Write it] is for children to have a true understanding of a mathematical concept, they need to master all three phases within a year group's scheme of work.

Addition- EYFS			
Objectives	Concrete	Pictorial	Abstract
- Knows that a group of things change in quantity when something is added. - Find the total number of items in two groups by counting all of them. - Says the number that is one more than a given number. - Finds one more from a group of up to five objects, then ten objects. - In practical activities and discussion, beginning to use the vocabulary involved in adding. - Using quantities and objects, they add two single digit numbers and count on to find the answer. - Solve problems including doubling.	Use toys and general classroom resources for children to physically manipulate, group/regroup. Use specific maths resources such as counters, snap cubes, Numicon etc Use visual supports such as ten frames, part part whole and addition mats with the physical objects and resources that can be manipulated.	Two groups of pictures so children are able to count the total. Bar model using visuals, pictures/icons or colours. Use visual supports such as ten frames, part part whole and addition mats with pictures/icons.	A focus on symbols and numbers to form a calculation. $5+2=7$ * No expectation for children to be able to record a number sentence/addition calculation.

Addition- Year 1

Start at the bigger number and counting on	Start with the larger number on the beadstring and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 (The 'Make 10’ strategy)	$6+5=11$ Start with the bigger number and use the smaller number to make 10 . Use ten frames.	$3+9=$ Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?
Vocabulary	add, more, plus, and, make, alt	er, total, equal to, equals, double, most, count on,	ber line, balancing, part, part, whole

Addition- Year 2

Objective and Strategy	Concrete	Pictorial	Abstract
Adding 3 1-digit numbers	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7 . Following on from making 10, make 10 with 2 of the digits (if oossiblel then add on the third dieit.		$\begin{aligned} (4+7+6 & =10+7 \\ 10 & \begin{array}{l} \text { combine the two oumbers } \\ \text { that make to end then add } \\ \text { on the remainder. } \end{array} \\ & =17 \end{aligned}$
Adding a 2-digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $17+5=22$ $5+17=22$ $22-17=5$ $22-5=17$
Adding a 2-digit number and multiples of 10	Explore that the ones digit does not change	Base 10 may be used above the number line initially. The calculation will be shown alongside the number line to see the connection	$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$

Adding two 2-digit numbers (No re-grouping)	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. Numicon may also be used	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. Use number line and bridge ten using part whole if necessary. Base 10 may be used above the number line. The calculation will be shown alongside the number line to see the connection The Bar Model will be used to support problem solving moving onto the generalisation that $b+c=a$. Children will focus on using the abstract representation with the pictorial to support where necessary.	Partitioning: $\begin{gathered} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$ Recording addition in columns supports place value and prepares for formal written methods with larger numbers. Toward the end of the year, children move to more formal recording using partitioning method: $\begin{array}{r} 40+7 \\ 30+5 \\ \hline 70+12 \end{array}$
Vocabulary	add, more, plus, and, make, altogether, total,	als, double, most, count on, number line, sum boundary	s, units, partition, addition, column, tens

Addition- Year 4						
Objective and Strategy	Concrete		Pictorial		Abstract	
Using formal written methods of columnar addition where appropriate add numbers with up to 4 digits (with exchange)	Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand. The calculation will be shown alongside the manipulative used to see the connection \square Calculation		Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding.		Continue from previous work to carry hundreds as well as tens.	
Add decimals with 2 decimal places, including money.	Introduce decim and model ex	lace value counters nge for addition.		+81.79 onds rents hundreats 00 000 00009 0 0000 00 000 00060 6	$\begin{aligned} & E \\ & + \\ & E \end{aligned}$ As the c decimals with places and	hildren move on, introduce h the same number of decimal different. Money can be used here.
Vocabulary	addition add, more,	d make, sum, total, altogethe	ble, near do po	ouble, half, halve, tens bound point	hundreds bo	ndary, decimal, decimal

Addition- Year 5/6			
Objective and Strategy	Concrete	Pictorial	Abstract
add numbers with more than 4 digits.	See Year 4	See Year 4	Children should have abstract supported by a pictorial or concrete if needed.
add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points.	See Year 4	See Year 4	$\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 120,579 \\ 1111 \\ 23.361 \\ 9.0880 \\ 59.770 \\ +\quad 1.300 \\ \hline 93.511 \\ 21.2 \end{array}$ Insert zeros for place holders.
Vocabulary	addition add, more, and make, sum, total, altogether, double, near double, half, halve, tens boundary, hundreds boundary, decimal, decimal point		

Subtraction

Subtraction- EYFS			
Objectives	Concrete	Pictorial	Abstract
- Knows that a group of things change in quantity when something is taken away - Find one less from a group of five objects, thenten objects. - In practical activities and discussion, beginning to use the vocabulary involved in subtracting. - Using quantities and objects, they subtract two single digit numbers and count back to find the answer.	Use toys and general classroom resources for children to physically manipulate, group/regroup. Use specific maths resources such as snap cubes, Numicon, bead strings etc. Use visual supports such as ten frames, part part whole and subtraction mats, with the physical objects and resources that can be manipulated.	A group of pictures for children to cross out or cover quantities to support subtraction. Use visual supports such as ten frames, part part whole and bar model with pictures/icons.	A focus on symbols and numbers to form a calculation. $10-6=4$ $7-3=?$ * No expectation for children to be able to record a number sentence/addition calculation.

Subtraction- Year 1			
Objective and Strategy	Concrete	Pictorial	Abstract
Subtract one-digit and two-digit numbers to 20, including 0 . Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away. $15-3=$ \square	$7-4=3$ $16-9=7$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 Use counters and move them away from the group as you take ther away counting backwards as you go.	Count back on a number line or track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? (Use your fingers to help you)

Find the difference	Compare objects and amounts Lay objects to represent bar model.		Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister?
Represent and use number bonds and related subtraction facts within 20 Part-part whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what ss the other part? $10-6=4$	Use a pictorial representation of objects to show the part-part whole model	5 10 Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?
Vocabulary	equal to, take, take-away, less, minus, subtract, leaves, distar much less is...	between, how many more, how many fewer/less than,	st, least count back, how mayleft, how

Subtraction- Year 2

Objective and Strategy	Concrete	Pictorial	Abstract
Subtract a two-digit number and ones, a twodigit number and tens, two two-digit numbers Partitioning to subtract without re- Grouping: 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping. The calculation will be shown alongside the manipulative used	Children draw representations of Dienes and cross off. b $43-21=22$	$43-21=22$ Recording subtraction in columns supports place value and prepares for formal written methods with larger numbers. Toward the end of the year, children move to more formal recording using partitioning method: e.g. $43-21=22$ $\begin{array}{r} 40 \text { and } 3 \\ -20 \text { and } 1 \\ \hline 20 \text { and } 2 \\ \hline \end{array}$
Make ten strategy	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$
Vocabulary	equal to, take, take-away, less, minus, subtract, leaves, distan left, how much less	e between, how many more, how many fewer difference, count on, strategy, partition, tens	than, most, least count back, how many

Subtraction- Year 3

Subtraction- Year 4

Objective and Strategy		Conc	ete			orial	
Subtract numbers with up to 4 digits using the formal written methods appropriate of columnar subtraction where appropriate Year 4 subtraction with up to 4 digits.	Model process of exchange using Numicon, base ten and then move toPV counters. The calculation will be shown alongside the model chosen to see the connection				Children to draw pv counters and show their exchange-see Y3 The calculation will be shown alongside the model chosen to see the connection		This will lead to an understanding of subtracting any number including decimals.
Introduce decimal subtraction through context of money	Child count take	to be en to repres unters aw Tenths 0.10 .1	couraged ent num ay to su Handrodths	to use ers and ract.	When confident, own way exchang 52.7-27.9	ildren can find their record the regrouping	
Vocabulary	equal to, ta left, how m	take-aw less is...	y , less, m ifferenc	nus, subtr count on,	aves, distance betwe egy, partition, tens u	n, how many more, ho s	many fewer/less than, most, least count back, how many

Multiplication

Multiplication-EYFS

Multiplication- Year 1			
Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate dorealing	Draw pictures to show how to double numbers Double 4 is 8	
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$
Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.

		Use pictures including number lines to solve problems. How man shoes would there be for three children?	
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.		$\begin{aligned} & 3 \times 2=6 \\ & 2 \times 5=10 \end{aligned}$
Vocabulary	Groups of, lots of, times, array, altogether		

Multiplication- Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.$5+5+5+5+5+5+5+5=40$111 111 111 111 $?$	Number lines, counting sticks and bar models should e used t show representations of counting in multiples. 	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \\ & \begin{array}{l} \begin{array}{l} \text { Use an array to write } \\ \text { multiplication sentences and } \\ \text { reinforce repeated addition. } \end{array} \\ \\ \\ \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{array} \end{aligned}$

Multiplication- Year 4

Multiplication Year 5

Objective and Strategy	Concrete	Pictorial	Abstract
Multiply numbers up to 4-digits by a one-digit number using the format written method, including long multiplication for 2-digit numbers Column multiplication for 3 and 4 digits $\times 1$ digit	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28	
Column multiplication (long multiplication)	Manipulatives may still be used with the corresponding long multiplication modelled alongside	Moving forward, multiply by a 2 digit number showing the different rows within the grid method.$24 \times 16=384$ x 2 0 4 1 0 2 0 0 4 0 6 1 2 0 2 4	24×6 on the first row. 240 384 ($6 \times 4=24$, carrying the 2 for the 20 , then $6 x$ 2) 24×10 on the secondrow. Show multiplyingby 10 by putting zero in the units first. $\begin{array}{r} 1234 \\ \times \quad 16 \\ \hline 7404(1234 \times 6) \\ 12340 \\ \hline 19744 \end{array}$
Vocabulary	Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse, derive, factor pairs, composite numbers, prime number, factors, squared, cubed		

Division- EYFS

Objectives	Concrete	Pictorial	Abstract
Solve problems including halving and sharing. - Halving a whole, halving a quantity of objects. - Sharing a quantity of objects.	Children have the opportunity to physicallycut objects, food or shapes in half. Counting and other maths resources for children to share into two equal groups. Use visual supports such as halving mats and part part whole, with the physical objects and resources that can be manipulated. Counting and other maths resources for children to explore sharing between 3 or more.	Pictures and icons that encourage children to see concept of halving in relation to subitising, addition and subtraction knowledge. i.e. Knowing 4 ismade of 2 groups of 2 , so half of 4 is 2 . Bar model with pictures or icons to support understanding of finding 2 equalparts of a number, to further understandhow two halves make a whole. Pictures for children to create and visualise 3 or more equal groups.	

Division- Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you an dividing by and work out how many would be within each group.	$28 \div 7=4$ Divide $\mathbf{2 8}$ into $\mathbf{7}$ groups. How many are in each group?
Vocabulary	share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over		

Division- Year 3				
Objective and Strategy	Concrete		Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$	Continue division pr ?	se bar modelling to aid solving ems. 20 $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in $24 ?$ $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \mathrm{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an arra into groups sentences	nd use lines to split the array ake multiplication and division	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

Divide 2- digit
numbers by 1-1
digit number by
partitioning into
tens and ones
using a pu
grid

Divide numbers
that involve
exchangings
between the
tens and ones.
The answers do
not have
remainders.

Division- Year 4				
Objective and Strategy		Concrete	Pictorial	Abstract
Divide up to 3 digit numbers by 1 digit. Short Division	$96 \div 3$ 3 Use pl bus stop \qquad $42 \div 3$ Start sharin ten in \qquad We ex share We look is 14 .	Tens Units 3 ${ }^{2}$ $\odot \odot \odot$ \odot $\odot \odot \odot$ \odot $\odot \odot \odot$ \odot $\odot \odot$ \odot value counters to divide using the thod alongside he biggest place value, we are into three groups. We can put 1 group and we have 1 ten left over. ge this ten for ten ones and then nes equally among the groups. w much in 1 group so the answer	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder Children should be aware that a 0 is used to keep place value, if the number is not divisible. Move onto divisions with a remainder.
Vocabulary	shar inver	hare equally, one each, two eca derive	lots of, array, divide, divided by, divided into, division,	ng, number line, left, left over, product, division facts,

Division- Year 5			
Objective and Strategy	Concrete	Pictorial	Abstract
Divide at least 4 digit numbers by 1 digit. Interpret remainders appropriately for the context Short Division	 Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Finally move into decimal places to divide the total accurately.
Vocabulary	share, share equally, one each, two each..., groun inverse, derive, formal written method.	lots of, array, divide, divided by, divided into, division, gr	number line, left, left over, product, division facts,

Division-Year 6

Division-Year 6	
Objective and Strategy	Abstract
Long Division	Step 1 - a remainder in the ones $\begin{aligned} & \text { hto } \\ & 041 \mathrm{R} 1 \\ & \hline 4 \longdiv { 1 6 5 } \end{aligned}$ 4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160). 4 goes into 16 four times. 4 goes into 5 once, leaving a remainder of 1 . $\begin{aligned} & \text { th hto } \\ & 0400 \mathrm{R7} \\ & \hline \begin{array}{l} 3207 \end{array} . \end{aligned}$ 8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$. 8 goes into 32 four times ($3,200 \div 8=400$) 8 goes into 0 zero times (tens). 8 goes into 7 zero times, and leaves a remainder of 7 . $\begin{array}{r} h t o \\ 061 \\ 4 \longdiv { 2 4 7 } \\ \frac{-4}{3} \end{array}$ When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 . Check: $4 \times 61+3=247$ $\begin{array}{r} \text { th hto } \\ 0402 \\ \begin{array}{r} 1609 \\ \frac{-8}{1} \end{array} \end{array}$ When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 . Check: $4 \times 402+1=1,609$ Step 2 - a remainder in the tens

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
$\begin{array}{r} 10 \\ 2 \longdiv { 2 } \\ \hline 28 \end{array}$	$\begin{gathered} t 0 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$	$\begin{array}{r} 29 \\ 2 \longdiv { 5 8 } \\ -41 \\ \hline 18 \end{array}$
Two goes into 5 two times，or 5 tens $\div 2=2$ whole tens - －but there is a remainder！	To find it，multiply $2 \times 2=4$ ，write that 4 under the five，and subtract to find the remainder of 1 ten．	Next，drop down the 8 of the ones next to the leftover 1 ten．You combine the remainder ten with 8 ones，and get 18.

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t 。	t 。
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
$-\frac{4}{18}$	－4 18	$\frac{-4}{18}$
18	－18	－18
	0	0
Divide 2 into 18．Place 9 into the quotient．	Multiply $9 \times 2=18$ ，write that 18 under the 18 ，and subtract．	The division is over since there are no more digits in the dividend．The quotient is 29 ．

Step 3 －a remainder in any of the place values

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\frac{i^{n o}}{2 \longdiv { 2 7 8 }}$ Two goes into 2 one time, or 2 hundreds $+2=1$ hundred.	$\begin{gathered} n: 0 \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} n+0 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{21}{07} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} h: 0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{gathered}$ Divide 2 into 7 . Place 3 into the quotient.	$\begin{gathered} n: 0 \\ 2 \longdiv { 2 7 8 } \\ 2-\frac{2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remsinder of 1 ten.	$\begin{gathered} n 10 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h 10 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{gathered} n: 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -6 \\ \hline 18 \\ \frac{-18}{0} \end{gathered}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & h: 8 \\ & 2 \longdiv { 1 3 9 } \\ & -278 \\ & -2 \\ & \hline 07 \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline 0 \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

